Hepatitis C virus (HCV) NS5A protein downregulates HCV IRES-dependent translation.

نویسندگان

  • Katerina I Kalliampakou
  • Maria Kalamvoki
  • Penelope Mavromara
چکیده

Translation of the hepatitis C virus (HCV) polyprotein is mediated by an internal ribosome entry site (IRES) that is located mainly within the 5' non-translated region of the viral genome. In this study, the effect of the HCV non-structural 5A (NS5A) protein on the HCV IRES-dependent translation was investigated by using a transient transfection system. Three different cell lines (HepG2, WRL-68 and BHK-21) were co-transfected with a plasmid vector containing a bicistronic transcript carrying the chloramphenicol acetyltransferase (CAT) and the firefly luciferase genes separated by the HCV IRES sequences, and an expression vector producing the NS5A protein. Here, it was shown that the HCV NS5A protein inhibited HCV IRES-dependent translation in a dose-dependent manner. In contrast, NS5A had no detectable effect on cap-dependent translation of the upstream gene (CAT) nor on translation from another viral IRES. Further analysis using deleted forms of the NS5A protein revealed that a region of about 120 aa located just upstream of the nuclear localization signal of the protein is critical for this suppression. Overall, these results suggest that HCV NS5A protein negatively modulates the HCV IRES activity in a specific manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amino acids 1-20 of the hepatitis C virus (HCV) core protein specifically inhibit HCV IRES-dependent translation in HepG2 cells, and inhibit both HCV IRES- and cap-dependent translation in HuH7 and CV-1 cells.

A self-modulating mechanism by the hepatitis C virus (HCV) core protein has been suggested to influence the level of HCV replication, but current data on this subject are contradictory. We examined the effect of wild-type and mutated core protein on HCV IRES- and cap-dependent translation. The wild-type core protein was shown to inhibit both IRES- and cap-dependent translation in an in vitro sy...

متن کامل

Alpha interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication.

Hepatitis C virus (HCV) infection is treated with interferon (IFN)-based therapy. The mechanisms by which IFN suppresses HCV replication are not known, and only limited efficacy is achieved with therapy because the virus directs mechanisms to resist the host IFN response. In the present study we characterized the effects of IFN action upon the replication of two distinct quasispecies of an HCV ...

متن کامل

Hepatitis C virus internal ribosome entry site-dependent translation in Saccharomyces cerevisiae is independent of polypyrimidine tract-binding protein, poly(rC)-binding protein 2, and La protein.

Translation initiation of some viral and cellular mRNAs occurs by ribosome binding to an internal ribosome entry site (IRES). Internal initiation mediated by the hepatitis C virus (HCV) IRES in Saccharomyces cerevisiae was shown by translation of the second open reading frame in a bicistronic mRNA. Introduction of a single base change in the HCV IRES, known to abrogate internal initiation in ma...

متن کامل

Hepatitis C virus core protein acts as a trans-modulating factor on internal translation initiation of the viral RNA.

Translation initiation of hepatitis C virus (HCV) RNA occurs through an internal ribosome entry site (IRES) located at its 5' end. As a positive-stranded virus, HCV uses the genomic RNA template for translation and replication, but the transition between these two processes remains poorly understood. HCV core protein (HCV-C) has been proposed as a good candidate to modulate such a regulation. H...

متن کامل

Enhancement of internal ribosome entry site-mediated translation and replication of hepatitis C virus by PD98059.

Translation initiation of hepatitis C virus (HCV) occurs in an internal ribosome entry site (IRES)-dependent manner. We found that HCV IRES-dependent protein synthesis is enhanced by PD98059, an inhibitor of the extracellular signal-regulated kinase (ERK) signaling pathway, while cellular cap-dependent translation was relatively unaffected by the compound. Treatment of cells with PD98059 allowe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of general virology

دوره 86 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2005